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STANDARD PROCEDURE FOR USE OF THERMOLUMINESCENCE DOSIMETRY

IN RADIATION-HARDNESS TESTING OF ELECTRONIC DEVICES

J.C. Humphreys and S.E. Chappell

Radiation Physics Division
Center for Radiation Research
National Bureau of Standards

Washington, D.C. 20234

1 . INTRODUCTION

Electronic systems of many types are employed in the nation's

tactical and strategic weapons systems as well as in deep-space

probes. These systems must be able to function reliably in the

radiation environments they are expected to encounter in carrying

out their missions. There has been a lack of consistency in the

experimental results of radiation dosimetry measurements made at

the various facilities that are testing the radiation hardness of

these electronic systems. It became apparent that there was a need

for improvement in the dosimetry procedures employed by the hardness-

testing facilities. Since thermoluminescence dosimetry (TLD) systems

are widely used by the hardness- testing facilities, it was clear that

a standard TLD procedure would improve the reliability, reproducibil ity,

and uniformity of dosimetry measurements at these facilities. To this

end, a standard recommended practice was developed for the use of TLDs

in measuring absorbed dose in a medium as a result of photon or elec-

tron irradiation. This recommended practice is in the form of an

American Society for Testing and Materials (ASTM) standard. The

latest draft of this standard is contained in this report.



It should be noted that this draft standard has not received

final approval from ASTM (although approval is expected within the

next few months); therefore, it should not be cited as a reference

or published in another form without the expressed approval of the

E10 Comnittee Chairman or the Managing Director of ASTM. When the

standard has been approved and published by ASTM, it may be obtained

from that organization and referenced.

This report includes a selected bibliography of TLD character-

istics. This listing is not represented as being comprehensive, but

is intended as a guide for those workers getting started in the field

of thermoluminescence dosimetry.

The reference citations in the body of the draft standard are

for the references listed within that standard (pp. 35 and 36) and

are not to be confused with the bibliography.
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Standard Recommended Practice for

THE APPLICATION OF THERMOLUMINESCENCE-DOSIMETRY (TLD) SYSTEMS FOR

DETERMINING ABSORBED DOSE IN RADIATION-HARDNESS TESTING OF ELECTRONIC DEVICES

1 . Scope

1.1 This practice covers procedures for the use of thermo-

luminescence dosimeters (TLDs) to determine the absorbed dose in a

material irradiated by ionizing radiation. Although some elements of

the procedures have broader application, the specific area of concern

is radiation-hardness testing of electronic devices in which the material

of interest is usually silicon. This practice is applicable to the measure-

ment of absorbed dose in materials irradiated by gamma rays, x rays, and

electrons of energies up to 60 MeV. Specific energy limits are covered

in appropriate sections describing specific applications of the procedures.

The range of absorbed dose covered is approximately from ICf 2 to 10
1

* Gy

(one to 10 6 rad) and the range of absorbed dose rates is approximately from

1 0
2

to 10
1Q Gy/s (one to 10

12 rad/s). Absorbed dose and absorbed dose-

rate measurements in materials subjected to neutron irradiation are not

covered in this standard.

2. Significance

2.1 Absorbed dose in a material is an important parameter that

can be correlated with radiation effects produced in electronic com-

ponents and devices that are exposed to ionizing radiation. Reason-

able estimates of this parameter can be calculated if knowledge

of the source radiation field (i.e., energy spectrum and particle
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fluence) is available. Sufficiently detailed information about the radiation

field is generally not available. However, measurements of absorbed dose with

passive dosimeters in a radiation test facility can provide information from

which the absorbed dose in a material of interest can be inferred. Under certain

prescribed conditions, TLDs are quite suitable for performing such measurements.

3. Applicable documents

3.1 ASTM standards

E 170. Definitions of Terms Relating to Dosimetry.

E 380. Metric Practice

E 665. Practice for Determining Absorbed Dose vs. Depth

in Materials Exposed to the X-Ray Output of Flash

X-Ray Machines.

E 666. Method for the Calculation of Absorbed Dose from

Gamma- or X-Radiation.

3.2 International Commission on Radiation Units and Measurements

(ICRU) Reports*

ICRU Report 10b. Physical Aspects of Irradiation

ICRU Report 14. Radiation Dosimetry: X Rays and Gamma Rays

with Maximum Photon Energies Between 0.6 and 50 MeV

ICRU Report 17. Radiation Dosimetry: X Rays Generated at

Potentials of 5 to 150 kV

ICRU Report 19. Radiation Quantities and Units

ICRU Report 21. Radiation Dosimetry: Electrons with Initial

Energies Between 1 and 50 MeV

Available from ICRU, 7910 Woodmont Avenue, Washington, D.C. 20014.
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4. Definitions
4.1

absorbed dose - D, is the quotient of de by dm, where d7 is the

mean energy imparted by ionizing radiation to the matter in a volume

element and dm is the mass of natter in that volume element.

Previously, the special unit of absorbed dose was the rad,

however, the gray (Gy) has been adopted recently as the official SI

unit (see ASTM E38Q).

1 Gy = 1 J kg" 1 = 10 2 rad

4.2

exposure - X, is the quotient of dQ by dm where dQ is the

absolute value of the total charge of the ions of one sign produced

in air when all the electrons (negatrons and positrons) liberated by

photons in a volume element of air having mass dm are completely

stopped in air.

The special unit of exposure is the roentgen (R).

1 R - 2.58 x 1C"
4

C • kg' 1

4.3 absorbed-dose rate - the absorbed dose per unit time interval.

4.4 equilibrium absorbed dose - the absorbed dose at some incre-

mental volume within the material in which the condition of electron

equilibrium (as many electrons of a given energy enter as leave the volume)

exists. (See reference 1 and Appendix A3.)
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4.5
thermoluminescence (TL) phosphor - a material which stores, upon

irradiation, a fraction of its absorbed dose in various excited energy

states. When thermally stimulated, the material emits this stored energy

in the form of photons in the ultraviolet, visible, and infrared regions.

4.6 thermoluminescence dosimeter (TLD) - a TL phosphor, alone, or

incorporated in a material, used for determining absorbed dose in materials.

For example, the TL phosphor is sometimes incorporated in a Teflon matrix.

4.7 thermoluminescence dosimeter (TLD) reader - an instrument used

to measure the light emitted from a TLD consisting essentially of a heat-

ing element, a light measuring device, and appropriate electronics.

4.8 thermoluminescence dosimeter (TLD) response - the measured

light emitted by the TLD and read out during its heating cycle consisting

of one of the following: (a) the total light output over the entire heating

cycle, (b) a part of that total light output, or (c) the peak amplitude of

the light output.

4.9 thermoluminescence dosimeter (TLD) batch - a group of TLDs, generally

originating from a single mix or lot of TL phosphor, having similar TL

responses and similar thermal and irradiation histories.

4.10 TLD preparation - the procedure of cleaning, annealing, and

encapsulating the TL phosphor prior to irradiation.

4.11 anneal ing - thermal treatment of a TLD prior to irradiation

or prior to readout.

NOTE 1 - Pre-irradiation annealing of TLDs is usually done to erase the

effects of previous irradiation and to readjust the sensitivity

of the phosphor; pre-readout annealing usually is done to reduce

low- temperature TLD response.
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4.12 calibration conditions - the normal environmental conditions

prevailing during routine calibration irradiations such as the ambient

temperature, humidity, and lighting.

4.13 test conditions - the normal environmental conditions prevailing

during routine hardness-test irradiations such as the ambient temperature,

humidity, and lighting.

5. Apparatus

5.1 A TLD system consists of the TLDs, the equipment used

for preparation of the TLDs, and the TLD reader.

5.2 A calibration facility delivers a known quantity of radi-

ation to materials under certain prescribed environmental and geo-

metrical conditions. Its radiation source is usually a radioactive

isotope, commonly either ^Co or ^Cs, whose radiation output has

been calibrated by specific techniques to some specified uncertainty

(usually to within ±5%).

5.3 A storage facility provides an environment for the TLDs

before and after irradiation, that is light tight and that has a

negligible background absorbed-dose rate. A TLD stored in the facility

for the longest expected storage period should absorb no more than 1%

of the lowest absorbed dose expected to be measured in hardness-testing

appl ications.

5.4 An environmental chamber is used in testing the effects of

temperature and humidity on TLD response. The chamber should be cap-

able of controlling the temperature and humidity within ±5% over

the range expected under both calibration and test conditions.
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6. Handling and readout procedures

6.1 Bare TLDs, such as those not sealed in glass, should not be

handled with the bare fingers; dirt or grease on their surfaces can

affect their response. It is recommended that tweezers or vacuum pick-up

tools be used in handling. If required, the TLDs can be cleaned by using

the procedures given in Appendix A1

.

6.2 TLDs should be protected as much as possible from light having

an appreciable ultraviolet component such as sunlight or fluorescent

lighting. Prolonged exposure to uv light, either before or after

irradiation, can cause spurious TLD response and enhanced post-irradi-

ation fading. Incandescent lighting is recommended for the TLD prep-

aration and readout areas. Howeyer, brief exposures of a few minutes

under normal room fluorescent lights should not significantly affect

TLD response except for low absorbed-dose measurements (<1 Gy or <100 rad).

6.3 Preparation of the TLDs for irradiation consists of cleaning

the TL phosphor (if required), annealing (if reusable TLDs are employed),

and encapsulating the TL phosphor. Reusable TLDs require careful treatment

during annealing in order to obtain the best results in dose measurements.

The annealing procedure should include a reproducible temperature cycle

of the annealing oven, accurate timing of the annealing period, and a

reproducible cooling rate.

6.4 for low absorbed-dose measurements (<1 Gy or <100 rad), dry

nitrogen should be flowed through the heating pan area of the TLD reader

during readout. This technique suppresses the spurious TL response that

occurs in most forms of TLDs as a result of adsorbed oxygen on the phosphor

surface.
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6.5 Cal ibrati on- irradiated TLDs and all subsequent test-irradi-

ated TLDs from the same batch should be read out with the same reader

using the same readout techniques and reader parameters. The calibra-

tion is valid only for that batch used in that particular reader.

Readers that are different from the one used for calibration, includ-

ing those of the same make and model, do not necessarily indicate the

same TLD response for TLDs irradiated to the same absorbed dose.

6.6 TLDs are utilized in two basic ways: as reusable or as single-

use "throw-away" dosimeters. Dosimeters employed in a reusable mode are

cycled repeatedly through an anneal-irradiation-readout procedure. The

single-use dosimeters are irradiated once, read out, and then discarded;

they are generally used as received from the manufacturer.
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7. Summary of requirements for performance testing of a TLD system

7.1 The performance of a specific TLD system should be evaluated

to determine its suitability for use in a specific radiation-hardness

test. Acceptable performance of the TLD system should be ascertained

before applying the system in a particular radiation-hardness-testing

facility. Specific performance criteria will be discussed in section 8.

7.2 Performance tests should be repeated whenever a significant

change is made in the TLD system or in the specific application.

Examples of such changes are: a change in the physical form or type of

phosphor in the TLD, a change in any critical component or in any

adjustable readout factor of the TLD reader, or a change in the irradiation

source characteristics.

7.3 A particular performance test may be omitted if widely accepted

documentation exists in the scientific and technical literature to show

that the performance of the TLD system is satisfactory for that specific

requirement. For example, if previously accepted studies document that a

particular TLD has no absorhed-dose-rate dependence for the expected con-

ditions of irradiation, then performance testing for absorbed-dose-rate

dependence of that TLD system is unnecessary. All reports of test results

should include appropriate references that substantiate the performance of

the system and thereby justify the omission of such performance tests.

7.4 If a particular TLD system fails to meet the performance

specification of any performance test, then use of that TLD system is

not recommended. However, such a system may be employed, if necessary,

but only if appropriate corrections to the TLD response can be determined

sufficiently well in order that the results of the specific radiation-

hardness test can be determined within the required uncertainty.
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7.5 The number of TLDs, or the number of replicates of measure-

ments with a single TLD, used for each test should be sufficient to

assure that the test results are significant at the 95% confidence

level. The number of measurements required is specified in each test

procedure and is based on the assumption of random samples drawn from

a TLD batch whose responses have a normal population distribution. See

reference 2 for details of the procedures used to select random

samples and to determine the sample size required.

NOTE 2 - If a sample of n measurements Yi, Y 2 S , Y
n

is taken,

the best estimate of the population mean , m, of a normal distribution is

given by the mean value , Y, of the sample:

The best estimate of the variance , a2
, of the distribution is given by the

variance , s
2

, of the sample:

It should be noted that the degree to which s is a best estimate

of a depends on the sample size and, as might be expected, s becomes

a better estimate of a as the sample size increases.

n

n

The quantity standard deviation of the distribution.
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8. Specific performance tests and correction factors

8. 1 Uniformity of TLD response within a batch .

8.1.1 Select a random sample of 30 TLDs from a batch. Treat

all of the sample TLDs in an identical manner, prepare them, irradiate them

in the calibration facility to the same absorbed-dose level, and read them

out. Determine the variance, s
2

, of the sample and estimate the standard devi-

ation of the TLD response distribution (a = yfs
1

)

.

The standard deviation

a should not exceed 8% of the sample mean value, Y
Q

; i.e., a < (0.08) Y .

The sample size specified (30) is the number of measurements required to

estimate the standard deviation, a, of the TLD response distribution

within 25% of its true value at a 95% confidence level (see section 2.4

of reference 2).

8.1.2 For reusable TLDs that have been subjected to a number of

anneal-irradiation cycles, the uniformity of the batch response should be

verified periodically by repeating the test of 8.1.1. The frequency required

for the test depends on the type of TLD and on its previous anneal -irradiation

history. Retesting of the batch, uniformity becomes particularly important for

TLDs irradiated to high dose levels (>10
2 Gy(10 4

rad)).

8.2 Reproducibility of TLD response of individual reusable dosimeters

Certain types of TLDs may be utilized as individual reusable do-

simeters. In this case, the identity of each individual dosimeter is main-

tained during repeated measurement cycles throughout its useful life. This

is in contrast to utilization in the batch mode where individual dosimeters

within the batch are not identified. To test the reproducibility of the

response of an individual reusable dosimeter, the following procedures

should be followed.

12



8 . 2.1 Select the individual TLD to be tested, prepare it,

irradiate it in the calibration facility to a specific absorbed-dose

level (e.g., at the midpoint of the absorbed-dose range of interest),

and read it out. In an identical manner, repeat this procedure thirty

times. Determine the variance, s
2

, of the responses and estimate the

standard deviation of the TLD response distribution (a = Vs 2
). The

standard deviation, a, should not exceed 5% of the mean response value,

T
o

; i.e., a s(0.05) Y
q

.

8.2.2 Some types of TLDs may exhibit a change in sensitivity

(i.e., response per unit absorbed dose) with repeated anneal-irradiation-

readout cycling. This effect is most pronounced if the TLD is not annealed

thoroughly. The test results of 8 . 2.1 may not show such a change in

response sensitivity. However, if such a change is shown in that test or if

it appears after a larger number of cycles than specified in that test,

then a different analysis of the data is required. In this case, a curve

should be fitted to the data of response vs. number of cycles by a least-

squares method. A measure of reproducibility would then be given by the

average standard deviation of the data points from the least-squares curve.

The performance criterion is the same as in 8 . 2 . 1 .

8 . 2.3 Since the identity of each TLD is maintained when it is

utilized as an individual dosimeter, it is not necessary that groups of

such individual TLDs meet the batch requirements of 8 . 1 . However,

for the other performance tests and correction factors discussed

in Section 8, it is assumed that such tests and factors are evaluated

by utilizing TLDs in a batch mode.

13



8. 3 Dependence of TLD response on absorbed-dose rate

8.3.1. From a TLD batch meeting the requirements of 8.1.1,

select a number of TLDs. Divide the TLDs into a number of groups, x, each

group containing n samples. Determine the absorbed-dose-rate range of

interest for the intended application and divide this range into x intervals

(for example, one interval per decade). Prepare all the TLDs in an identical

manner, and irradiate each group to the same dose level, but at a different

absorbed-dose rate for each x group, covering the absorbed-dose-rate range

of interest. Read out the TLDs. Determine the mean response, , for each x

group of n samples. Determine an overall mean value, Y
Q

, for all x group

means. Then the absolute difference between any group mean and the overall

mean should not exceed 20% of the overall mean. That is.

Y, - Y
|

< (0.2) Yni o 1 - o

8.3.2 If
|

Yj - Y
q |

> (0.05) Y
q ,

then appropriate correc-

tion factors to the TLD response as a function of absorbed-dose rate

should be determined by the procedures that follow.

8.3.3 Determine the number of samples n required in each x

group in order to detect a difference of 6 = (0.05)Y
o

between a group

mean and the overall mean for a confidence level of 95% and a proba-

bility of 0.05 of failing to detect such a difference. It is assumed

that the variance (a
2

) of the TLD response, determined in 8.1.1, does

not vary with absorbed-dose rate. Calculate the following parameter:

6 6

d =

V~2o
:

o\fz

Then the sample size, n, required for each x group to satisfy the above

parameters is read off the graph of n vs. d (Fig. A4.1) in Appendix A4.

14



8.3.4 Example of sample number determination.

If a = 0.03 Y
q

(determined in 8.1.1),

yjt 0.03 Y
Q

From Fig. A4.1, the sample size required is n = 4.4. The sample size

should be 5, obtained by rounding up to the nearest integer.

NOTE 3 - One method by which this test requirement can be carried

out is by comparing the TLD responses with the response of another

radiation dosimeter whose absorbed-dose-rate dependence is known. A

suitable type of dosimeter for use in most cases would be a calorimeter

whose response is absorbed-dose-rate independent and whose radiation

absorption properties are similar to the TLD under test.

8. 4 Dependence of TLD response on energy

8.4.1 The radiation absorption properties of the TLDs employed

in radiation-hardness testing should be similar to those of the material

in which the dose is to be estimated. Calculations can be made to de-

termine the effects of a broad incident energy spectrum on the response

of the TLDs compared to that of the material of interest (usually

silicon). The requirements of 7.5 are not applicable to this section.

8.4.2 If the ratios
tyen/p ^TLD

(lJ /p).
and

(S/p)
TLD

WpI are equal to 1 .0

en'^'mat
vw ' r 'mat

within ±10% over a significant range of the energy spectrum (for both

calibration and test irradiations) incident upon both the TLD and the

material of interest, then the energy-response performance of the TLD

system is acceptable. Here, Pen /P
is the mass photon energy absorption

15



coefficient and S/p is the mass collision electron stopping power.

Tables of values of yen/p
and S/p for several materials may be found in

Appendix A2. The phrase "significant range of the energy spectrum" means

the minimum and maximum energy limits containing those incident radiation

particles (either photons or electrons) that contribute at least 90%

of the absorbed dose. In this case, detailed energy spectral informa-

tion is not required; the incident particle fluence (either photons or

electrons) between the energy limits is sufficient.

8.4.3 If the energy spectrum of the radiation incident upon the

TLD (under both calibration and test conditions) and the material of

interest (under test conditions) is well known, then the conversion from

absorbed dose in the TLD to absorbed dose in the material of interest can

be calculated from such data. If this conversion can be made to an un-

certainty of ±10% or less, then the performance of the TLD system is accept

able. In this case, the criteria concerning the ratios of Pen /p
and S/p in

8.4.2 need not be met. (See ASTM Method E 666 for more specific guidelines.

8. 5 Dependence of TLD response on direction of incident radiation .

8.5.1 If the geometrical orientation of the TLD with respect to

the radiation-hardness test field is significantly different than its

orientation with respect to the calibration radiation field, then any

dependency of the TLD response on the direction of the incident radiation

should be determined. Select a number of TLDs from a batch meeting the

requirements of 8.1.1. Divide the TLDs into a number of groups, x, each

group containing n samples. Prepare the TLDs in an identical manner,

and irradiate each group to the same absorbed-dose level in the following

manner: (a) group g Q
in the usually oriented direction used for routine

calibration, and (b) groups gi , g 2 , , g v oriented, respectively, at

16



angles 6i, 0 2 , , 6 , relative to the usually oriented direction with

the center of the group at the same distance from the source. These

angles should divide, in equal intervals of no more than 30° each, the

angle between normal and the maximum possible angle of incidence of the

radiation-hardness test field. Read out all the TLDs. Determine the

mean response, Y^, for each x group of n samples. Then the absolute

difference between the mean, Y , for the normally used calibration orien-

tation and the mean for any other orientation should not exceed 5% of the

mean. Y . That is,

I Y. - Y Is 0.05 Y .
1

i o 1 o

To determine the sample size n required for each x group, use the pro-

cedures of 8.3.3.

NOTE 4: CAUTION - This test applies only to a coll imated-beam

type calibration source geometry. If the angle of incidence of the

radiation from the calibration source is nearly isotropic, then it is

recommended that the TLDs and their encapsulation material should be as

nearly spherical as possible.

8.6 Dependence of TLD response on time between preparation and

irradiation

8.6.1 A change in TLD sensitivity can occur during the storage

period between preparation and irradiation. This may be a significant

effect if a wide range of storage periods is used. Use the following

procedure to test for this effect. From a TLD batch meeting the re-

quirements of 8.1.1, select two equal groups of n samples each. Pre-

pare the first group of TLDs and place them in the storage facility

17



for a time interval equal to the maximum time interval expected between

preparation and irradiation during routine application in either cali-

bration or hardness testing. At a later time, prepare the second group

of TLDs, and place them in the storage facility for the minimum time

interval expected between preparation and irradiation. Time the pro-

cedures so that the ends of the storage periods for both groups occur

simultaneously. Then irradiate both groups to the same absorbed dose

level in the calibration facility and read them all out.

The difference between the mean TLD response, Ylt of the first

group and the mean response, Y2 , of the second group is a measure of the

effect of storage time between preparation and irradiation. This differ-

ence should not exceed 20% of the average of the means of the two groups.

That is,

_ _ Yi + Y 2

|
Yi - Y2 |

< (0.2) .

2

8.6.2 If the effect tested for in 8.6.1 exceeds 5 % of the average

of the group means, then the functional dependence of the TLD response

on the storage period should be determined in order that appropriate

correction factors may be applied. This functional dependence may be de-

termined by the procedures that follow.

8.6.3. The range of the elapsed time intervals between preparation

and irradiation of interest is determined from the minimum and maximum

intervals utilized in 8.6.1. Tests should be performed at a minimum of

two intervals per decade of elapsed time over the entire range. For ex-

ample, if the minimum elapsed time is 0.1 hour and maximum elapsed time

is 100 hours, than an appropriate set of tests would be at elapsed

times of 0.1, 0.3, 1, 3, 10, 30, and 100 hours. From a TLD batch meet-

ing the requirements of 8.1.1, select as many groups of n samples each as

18



there are elapsed time intervals as determined above. Prepare a group

of TLDs, and place it in the storage facility for the appropriate pre-

selected test-time interval. Repeat this procedure for all preselected

storage time intervals from the maximum to the minimum elapsed time.

Arrange the storage times so that the ends of all procedures occur simul-

taneously. Then irradiate all groups to the same dose level in the cali-

bration facility and read them all out as quickly as possible thereafter.

This procedure is designed to minimize effects on dosimeter response

caused by fading and variation in reader output. Determine the mean re-

sponse for each group of TLDs. A plot of mean TLD response vs. elapsed

time provides a correction factor for a change in TLD sensitivity as a

function of storage period. The number of samples n required for each

group of TLDs should be determined by the procedures of 8.3.3.

8. 7 Dependence of TLD response on time between irradiation

and readout

8.7.1 Significant fading of the TLD response may occur during

the storage period between the end of irradiation and readout. Use the

following procedure to test for this effect. From a TLD batch meeting

the requirements of 8.1.1, select two equal groups of n samples each.

Prepare the first group of TLDs, irradiate them in the calibration

facility to a specific dose level, then place them in the storage facility

for an interval equal to the maximum time interval .expected during routine

application (for either calibration or hardness testing) between the end of

the irradiation period and readout. Prepare the second group of TLDs,

irradiate them in the calibration facility to the same dose level as the

19



first group, then place them in the storage facility for an interval

equal to the minimum time interval expected between the end of irradi-

ation and readout. Time the procedures so the ends of the storage periods

for both groups occur simultaneously. Read out all of the TLDs. The

absolute difference between the mean TLD response, 7i , of the first group

and the mean response, Y 2 , of the second group is a measure of the effect of

storage time between the end of irradiation and readout. This difference

should not exceed 20% of the average of the means of the two groups. That

is,

Yi + Y 2

I

Yi - Y 2
|

s (0.2)
2

Yi + Y 2

8.7.2 If the fading effect is greater than (0.05) , then

2

either a correction should be made to the TLD response or a procedure

used that eliminates the need for a correction. A procedure that

achieves the latter would be one in which all TLDs are read out at the

same elapsed time after the end of irradiation. Such a procedure is

often inconvenient or impractical. Therefore, it is usually necessary

to apply a fading correction to the TLD response. The fading character-

istics of the TLD system may be determined by the test procedures that

follow.

8.7.3 Determine the minimum and maximum elapsed times between

the end of the irradiation period and readout. Tests should be per-

formed at a minimum of two time intervals per decade of elapsed time

over the entire period as discussed in 8.6.3. From a TLD batch meeting

the requirements of 8.1.1, select as many groups of n samples each as

there are elapsed time intervals as determined above. Each group of TLDs

should undergo identical preparation and then should be irradiated in the
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calibration facility to the same dose level. The groups of TLDs are placed

in the storage facility for all preselected appropriate time intervals from

the maximum to the minimum elapsed time. Arrange the time of irradiations

for all the groups so that the ends of their storage periods occur simul-

taneously. Read out all the TLDs. Determine the mean response for each

group of TLDs. A plot of mean TLD response vs. elapsed time provides the

fading correction factor. The number of samples n required for each group

of TLDs should be determined by the procedures of 8.3.3.

8.8 Dependence of TLD response on temperature during storage or

i rradiation

8.8.1 If the storage temperature experienced by the TLDs between

preparation and irradiation during routine radiation-hardness testing

differs from the temperature during routine calibration by more than

10°C, test 8.6 should be repeated over the range of temperatures expected

using the environmental chamber instead of the storage facility. The per-

formance criteria of 8.6 are applicable to this section.

8.8.2 If the storage temperature experienced by the TLDs between

irradiation and readout during routine radiation-hardness testing differs

from the temperature during routine calibration by more than 10°C, test 8.7

should be repeated over the range of temperatures expected using the environ-

mental chamber instead of the storage facility. The performance criteria

of 8.7 are applicable to this section.

8.8.3 If the temperature experienced by the TLDs during the

irradiation period during routine radiation-hardness testing differs

from the temperature during routine calibration by more than 10°C, then

the effect on TLD response should be determined by the following procedure.

Select a number of TLDs from a batch meeting the requirements of 8.1.1,
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prepare them in an identical manner, and separate them into two equal

groups of n samples each. Irradiate the first group in the calibration

facility to a specific dose level, maintaining the temperature of the

TLDs at the minimum temperature expected during routine hardness-test

irradiations. Irradiate the second group in the calibration facility

to the same dose level, maintaining the temperature of the TLDs at the

maximum temperature expected during routine hardness-test irradiations.

Readout all of the TLDs. The difference between the mean TLD response,

Yi , of the first group and the mean response, Y 2 >
°f the second group is a

measure of the effect of temperature variation during irradiation. This

difference should not exceed 20% of the average of the means of the two

groups. If the magnitude of the effect is greater than 5% of the average

of the means, then appropriate corrections to the TLD responses should be

determined by procedures analogous to those used in 8.6.

8.9 Dependence of TLD response on humidity

8.9.1 In general, the responses of the most widely used TLDs have

not been shown to be sensitive to changes in relative humidity [3]. How-

ever, if a TLD that is hygroscopic (such as lithium borate) is being con-

sidered for application in radiation-hardness testing, then the perfomance

tests of 8.8 should be repeated with the humidity as the variable parameter

and the temperature maintained at the maximum value used in the temperature

tests.

NOTE 5. Once a TLD system of a particular TL phosphor type and physical

configuration has met the performance requirements of Section 8, new batches

of the same type need only be tested for the requirements of 8.1 (batch

uni formi ty)

.
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9. Calibration of the TLD system

9.1 Calibrate the TLD system in a manner such that the TLD response

can be related directly to the absorbed dose in the TLD phosphor. Use a

suitable, well-characterized radiation source in the calibration. Radio-

active isotope sources such as ^Co or ^Cs are generally used for this

purpose. The exposure rate (or absorbed-dose rate) produced by the source

should be known to better than ±5% at all locations normally used for

calibration irradiations. The methods used for determining the output

rates of such sources include the use of secondary standard radiation

measuring instruments, such as air-ionization chambers, whose calibration

is traceable to the National Bureau of Standards or other recognized

calibration laboratories. Other types of dosimeters, whose responses are

absolute (require no calibration), such as ferrous sulfate dosimeters and

calorimeters, may also be employed for source calibration.

9.2 The response of most types of TLDs generally is not linear

as a function of absorbed dose £4]. The response of a typical TLD is

usually linear from low absorbed-dose levels (mi 1 1 i rad region) to approxi-

mately 10 Gy (10
3 rad), then becomes supral inear up to approximately 10

2 -

10
3
Gy (10

4 - 10
5 rad) where saturation effects become evident. Exercise

care in the use of the TLD system for absorbed dose levels of approximately

10
3
Gy Cl

0

5
rad) or higher to ensure that the change in the system response

per unit absorbed dose is adequate in order that the absorbed dose can be

determined within the required uncertainty.

9.3 The absorbed-dose range of calibration should cover the maxi-

mum absorbed-dose range of interest for the intended application. Measure

a minimum of three absorbed-dose levels per decade of absorbed dose covered.

Since the TLD response vs. absorbed dose for most types of TLDs generally is
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not linear, make a sufficient number of measurements at each absorbed-

dose level to define accurately the shape of the characteristic response

curve. The number of TLD samples required to determine the mean response

at each absorbed-dose level is given by the following procedures.

9.3.1 In order to determine the mean TLD response, 7 , within

±5% at a 95% confidence level, the number of TLD samples required for a

given absorbed-dose level is

(2. 045)
2

s
2

(0.05 Y
o

)

2

where s is the estimate of the standard deviation, a, of the TLD response

distribution as determined by the procedures of 8.1.1. For example,

if s = (0.06)Y
q

, then

(2. 045)
2

(0.06 7 )

2

n = =
—2— = 6.0

(0.05 Y
o

)

2

(See Section 2-3.2 of reference 2 for more details.)

9.3.2 The procedures described in 9.3.1 assume that the stan-

dard deviation of the TLD response distribution is constant for all

absorbed-dose levels measured. This assumption generally is valid over

most of the usable absorbed-dose range for most TLDs but may not be correct

for very high absorbed-dose levels of approximately 10 3
Gy (10

5
rad) or

higher. If the TLD system is used at these absorbed-dose levels, then

redetermine the standard deviation of the response distribution at these

levels by repeating the procedures of 8.1.1.

9.4 During a calibration irradiation, encapsulate the TL phosphor

in a material with a thickness just sufficient to produce electron equili-
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brium in the phosphor (see Appendix A3). If possible, the encapsulation

material should have the same thickness on all sides of the dosimeter.

NOTE 6. The encapsulation material should resemble the phosphor

material as closely as possible with respect to radiation absorption

properties. For example, if the TL phosphor is CaF
2

, acceptable encapsu-

lation material would be CaF
2

, A1 , or Si. If the calibration source is

^°Co, then a thickness of 2.2 mm of A1 (equal to the practical range of

the highest energy secondary electrons produced) would establish electron

equilibrium in the CaF
2

phosphor. This thickness is sufficient to stop

secondary electrons that might be generated by the source photons in

material other than the encapsulation material.

9.5 It is necessary to correct for attenuation of the photons from

the source by the layer of material used to establish electron equilibrium.

This should be done using the following formula:

X = X e [
-

(tl
en

/p)px 3

0

where X is the attenuated exposure at the position of the TLD phosphor

in roentgens,

X
Q

is the unattenuated exposure in roentgens,

Pen/P
i s t *ie mass energy absorption coefficient of the encapsu-

lation material for the effective source photon energy in cm
2
/g,

p is the density of the encapsulation material in g/cm 3

, and

x is the thickness of the encapsulation material in cm.

Values of (yen/p)
may be found in Appendix A2.
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NOTE 7. The attenuation formula given is not rigorously correct

for a broad- beam geometry as it does not include a buildup factor.

Buildup factors generally are not available for a wide range of

energies, materials, and geometries. However, the formula gives re-

sults that are in reasonable agreement with more rigorous treatments

for materials of low to medium atomic number of relatively thin sections

over the range of photon energies that are applicable to this standard.

9.6 Once the exposure has been determined, the absorbed dose (in Gy)

to the encapsulated TL phosphor is found from the formula:

(y
d
tld

=

TU

en

en

/p |tld

^ p ^ a i

r

(0.869 x 10" 2
)X

The factor (0.869 x 10~ 2
) is used to convert exposure (R) to absorbed

dose in air (Gy). Conversion of exposure (R) to absorbed dose in air

(rad) would require a factor of 0.869. The subscripts refer to the

material of interest. As in 9.5, the y0n/p
values are evaluated at the

effective calibration source photon energy. This formula is valid only

if electron equilibrium exists in the TL phosphor. It is assumed that

the incident photon fluence is essentially monoenergetic. If this is

not the case, then average all of the energy-dependent energy absorption

coefficients of 9.5 and 9.6 over the appropriate energy spectrum.

9.7 The absorbed dose calibration results of the procedures of 9.3

to 9.6 are valid only for a given batch of TLDs. A different batch

generally will have a different radiation sensitivity. However, this

difference is usually a constant factor over the entire absorbed-dose
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range. Therefore, it is usually not necessary to generate a new calibra-

tion curve over the entire absorbed-dose range covered. Measurements at

a minimum of two points in the linear region and at a minimum of three

points in the supral inear and saturation regions of the response curve

normally is adequate to characterize the absorbed-dose sensitivity of a

different batch.

9.8 Because of possible long term aging effects in the TLD reader,

recalibrate the TLD system (as specified in 9.3 to 9.6) at periodic

intervals over the entire absorbed-dose range of application. The time

interval between calibrations depends on the long-term stability of the

TLD reader and on how much it is used. If the reader is used only a few

hours a week, then recalibration at 6 or 12 months intervals should be

adequate. For a reader that is used daily with a heavy work load,

monthly calibration is probably required.
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10. Procedures for characterizing and monitoring a test radiation

field with TLD systems

10.1 A variety of sources are used to produce the radiation fields

that are appropriate for radiation-hardness testing of electronic devices.

60
The most widely used fields are Co gamma rays, .x-ray (bremsstrahlung)

photons from fast-pulse (flash) accelerators, and high-energy electron

beams from linear accelerators (linacs). Maximum absorbed-dose rates

range from about 10 Gy ( S i ) / s (IQ
3 rad(Si)/s) to about 10

10 Gy(Si)/s

(IQ
12 rad(Si)/s).

10.2 TLDs irradiated in various locations in the test facility

under free-field conditions can be used to characterize the radiation

field. In addition, it may be desirable and practical to monitor the

radiation field of the source during actual radiation-hardness testing

of electronic devices. When there is a significant variation of the

source output from irradiation to irradiation, use TLDs as monitors.

IQ. 2.1 For irradiation by gamma rays or pulsed x rays, encapsulate

the TL phosphor in material with sufficient thickness to produce electron

equilibrium conditions in the TL phosphor. See Section 9.4 and Appendix A3

for details. The equilibrium material should have radiation absorption

properties similar to the material in which the absorbed dose is to be

determined. Since silicon is usually the material of interest, aluminum

is an acceptable equilibrium material.

10.2.2 For irradiation with electrons, the absorbed dose as a

function of depth for normally incident monoenergetic electrons has the

characteristic shape shown in Fig. 1 15]. For the electron energy spectrum

appropriate to the test source being employed, encapsulate the TL phosphor
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in a material with a thickness of approximately 0.1 the practical range

(

Rp
in Fig. 1) of the maximum-energy electrons on the incident radiation

side and with a thickness greater than the practical range on the side

opposite the incident electrons. By placing the TLD at this depth in

the material, possibly anomalous response caused by interface effects at

the material surface is avoided. As in the case for photons, the encapsu-

lation material should have radiation absorption properties similar to

the material of interest. In all cases in which the TLD is encapsulated,

the combined thickness of the encapsulation material in front of the TLD

and the TLD itself should be such that the back surface of the TLD is located

at a depth not much greater than the peak of the absorbed dose vs. depth

curve. For normal incidence, this depth is approximately one half of

the practical range of the electrons.

10.3 Select the TLDs to be used in characterizing or monitoring

the test radiation field from a batch that has been calibrated previously.

From the same batch, select several TLDs to be used as calibration-

check TLDs. The number of TLDs required for determining a specific

absorbed dose during the test irradiation may be obtained from the

procedures of 9.3.

10.3.1 At a time as close as possible to that of the hardness-

testing irradiations, irradiate several TLDs in the calibration facility

to two or more absorbed-dose levels within the absorbed-dose range

expected for the test irradiations. Read out these calibrated TLDs

along with the TLDs used in the hardness-testing irradiations. These

calibrated TLDs serve as checks on the stability of the TLD system.

10.3.2 If it is not convenient to use the procedure described in

10.3.1, an alternate procedure may be used. At some time before the
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hardness-testing irradiations occur, irradiate a number of TLDs that

will be used as calibration checks in the calibration facility to two or

more absorbed-dose levels within the expected absorbed-dose range of the

test irradiations. Place these calibrated TLDs in the storage facility

until hardness- testing irradiations are performed. Remove a few calibrated

TLDs from storage and read them out along with the test TLDs. The other

calibrated TLDs remain in storage until the next test irradiations are

performed, when a few more should be read out with the test TLDs. The

disadvantage of this method compared to that of 10.3.1, is that different

fading (and possibly temperature dependence) corrections must be applied

to each group of calibrated TLDs; in addition, the fading correction is

different for the calibrated TLDs than for the test TLDs. If the fading

correction is excessively large (>25%) for the calibrated TLDs, calibrate

another group for readout with the test- irradiated TLDs.

10.3.3 If reusable TLDs are irradiated (for either calibration

or testing) to high single or accumulated absorbed-dose levels (>10
2

Gy

(10
4

rad)), recal ibration may be required after each anneal-irradiation cycle

because of possible changes in absorbed-dose sensitivity [6]. If the TLD system

being used is subject to this effect, it is recommended that each TLD in

the batch be irradiated only once until the entire batch has been used,

after which the entire batch can be annealed and a new calibration per-

formed. In addition, because of possible changes in batch response uni-

formity due to high absorbed-dose irradiations, repeat the tests of 8.1.1

periodical ly.

10.4 The equilibrium absorbed dose in a material of interest can

be estimated from the absorbed dose in a TLD exposed to the same radiation
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field. This involves a conversion of the absorbed dose in a TLD irradiated

within a material under electron equilibrium conditions to absorbed dose

in a volume element of the material of interest having comparable dimensions

to the TLD, the volume element being surrounded by an equilibrium thickness

of the same material of interest. It has been shown that the TLD response

per unit absorbed dose in the TLD material is independent of the type

(photons or electrons) or the energy spectrum of the incident radiation

for the range of energies considered in this standard.

10.4.1 In a material undergoing photon irradiation, the presence of

the TLD may perturb the spectrum of the secondary electrons generated by

the primary photons. If the TLD is very thin compared to the range of

the secondary electrons, most of the energy deposited in the TLD and in

the material surrounding it come from secondary electrons produced outside

the TLD (i.e., in the equilibrium layer of material). Thus, the absorbed

dose in the material is given by

D
mat. rs/piTLD

d
tld O)

If the TLD has a thickness much greater than the range of the

secondary electrons, most of the energy deposited in it comes from secondary

electrons produced within the TLD itself. Thus, the absorbed dose in

the material is given by

^en^mat.
mat ' ' ^ p)TLD

TLD ( 2 )

If the TLD thickness is intermediate between the two limits given above,

then the two equations may be combined with appropriate weighting

factors to reflect the relative contributions of each term £7]. In
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general, for low atomic number material and for photon energies above about

0.2 MeV, the difference in the absorbed dose determined by equations (1)

and (2) is usually less than 10%. If the equilibrium buildup material

surrounding the TLD is not silicon, then the equilibrium absorbed dose in

silicon is given by

(per/ p) Si

Si Tp 7p1 j. mat.XH
en' K/ mat.

( 3 )

10.4.2 The effects of dosimeter size on the absorbed-dose conversion

for electron irradiation are not as clearly understood as for photon

irradiation [8,9]. However, reasonable estimates of the absorbed dose in

the material of interest can be made using equation (1) in 10.4.1 if the

initial incident electron energy is greater than 5 MeV and the TLD is less

than two thirds of the practical electron range in thickness. If the

material surrounding the TLD is not silicon, then the absorbed dose in

silicon is given by

( s/ p )
s1

Ds1 = lS/p)
mat.

' °mt '

10.5 Limitations of interpretation . Caution must be used in

interpreting the results of using the procedures of 10.4 for converting

the absorbed dose in the TLD to absorbed dose in the material of interest

(assumed to be silicon). Reasons for this are given in the following

sections.

(4)

10.5.1 The absorbed-dose conversions are most reliable when the TLD

and the equilibrium material surrounding it are similar to silicon in

radiation absorption properties.

10.5.2 The absorbed dose in the material is interpreted from an

integrated or average absorbed dose in the TLD at its location in the
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surrounding material and does not necessarily represent the actual absorbed

dose at any other point within the volume of the material.

10.5.3 The evaluated equilibrium absorbed dose in silicon does not

necessarily represent the absorbed dose in an electronic device irradiated

in the same test field. A number of factors complicate a straightforward

interpretation of the absorbed dose distribution within an irradiated

device. Examples of such perturbing factors include attenuation of the

radiation by the packaging material surrounding the device chip, variations

in absorbed dose near interfaces of the thin insulation and metallized

layers on or near the front surface of the chip, and changes in radiation

energy spectrum due to scattered radiation from adjacent hardware.

10.5.4 These ahsorbed dose interpretations are valid only if the

ratios of the energy absorption coefficients and stopping powers of sili-

con relative to the TLD are fairly constant over a significant range of

the incident photon or electron spectra. Otherwise, the incident energy

spectra must be known and the uncertainty in the results of the absorbed

dose conversion depends on the accuracy of the spectra data.
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1 1 . Report of results

11.1 Reports of radiation-hardness testing of electronic devices

should include information that fully describes the following:

11.1.1 The TLD system employed should be given, including the type

and physical form of the TLDs, the type of TLD reader, and the annealing

procedure used, if any.

11.1.2 The results of all performance tests carried out or reference

to relevant published studies of the TLD system should be given. Such test

results should include, as a minimum, the sample size, the mean value of

the sample responses, the absorbed-dose level, and the standard deviation

of the sample response distribution.

11.1.3 The procedure for calibrating the absorbed-dose response of

the TLD system should be described, including the radiation source type,

irradiation geometry, and conditions (e.g., absorbed-dose level, absorbed-

dose rate, and equilibrium material).

11.1.4 A description of the radiation-hardness-test irradiations

should be given, including radiation source type, geometry, and conditions,

(e.g., absorbed-dose level, absorbed-dose rate, and equilibrium material

)

as well as any useful supplemental data (e.g., energy spectra).

11.1.5 A description of the conversion of TLD response to absorbed

dose in the material of interest should be given, including calibration

factors, correction factors, and absorbed-dose conversion factors. The

absorbed-dose conversion factors would include information such as the

radiation absorption characteristics of the material of interest and

assumptions or data about the source energy spectrum.

11.1.6 An estimate of the overall uncertainty of the results should

be given as well as an error analysis of the factors contributing to the

random and systematic uncertainties. (For an example, see A1.6 of

Appendix A1
.

)
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APPENDIXES

AT. Recommended Procedures for Application of CaF
2
:Mn Chips

A1 . 1 Scope

A1 . 1 . 1 The procedures in this Appendix address the use of manganese

doped calcium fluoride TLDs in the form of reusable solid chips. This

is done for illustrative purposes only and is not meant to imply that

other types of phosphors, and physical forms of this or other phosphors,

are not suitable for use in radiation-hardness testing. Each type and

form of TLD requires a somewhat different application procedure. See

references 10-12 for descriptions of various types of TLDs. CaF
2
:Mn chips

do have some significant advantages over some other types and forms of

TLDs. Some of these advantages include radiation absorption characteristics

reasonably similar to silicon, a simple annealing schedule (compared to

LiF), ease of handling compared to powders, and relatively linear absorbed

-

dose response characteristics. The only disadvantage in using CaF
2
:Mn TLDs

is a moderate fading of the TLD response after irradiation.

A1 . 2 Dosimeter preparation

Al.2.1 Always handle chips gently and in a manner that will

minimize mechanical stress as well as the possibility of scratching or

chipping the dosimeter. The recommended handling tool is a vacuum pen;

however, tweezers may be used. The contact points of all handling tools

should be coated with Teflon if possible.

Al.2.2 Keep the chips as clean as possible at all times so that

cleaning can be avoided. Clean the chips only if absolutely necessary

since the process can contribute to the aging (decrease in sensitivity)

of the phosphor. If cleaning is necessary, the following procedure may

be used:
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1. bathe the chips in cool trichloroethylene for about 10 minutes in an

ultrasonic cleaner,

2. bathe the chips in distilled water for about 10 minutes in the

ultrasonic cleaner, and

3. dry the chips as rapidly as possible (dry nitrogen may be used to

hasten the drying).

Al.2.3 Anneal the chips for one hour at 500°C followed by rapid

cooling. This annealing is essential after irradiation at high absorbed

doses to avoid changes in dose sensitivity. For annealing, place the

chips in a tray or container of a material that will not react with them

at the annealing temperature. Platinum-plated silver or pyrex glass

should be satisfactory.

Al.2.4 For photon irradiation, encapsulate the chips so as to

provide electron equilibrium conditions in the dosimeter. See 9.4 and

Appendix A3. The required thickness of material surrounding the chip is

approximately equal to the range of the highest energy secondary electrons

that are generated by the incident photons. See 10.2.2 for encapsulation

of the chips for electron irradiation.

A1 . 3 Effects of storage and transportation

Al.3.1 Minimize the storage and transportation of the dosimeters,

either between preparation and irradiation or between irradiation and

readout. The dosimeters should be protected from uv light and elevated

temperatures during storage or transit as much as possible. Apply corrections

for any effects on dosimeter response caused by the duration and conditions
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of the storage or transit periods, or both. Correction factors for

fading during the storage periods before and after irradiation and for

any temperature effects can be determined by the procedures of Section

8. Changes in humidity have not been shown to affect the response of

CaF
2
:Mn chips.

A1 . 4 Irradiation procedures

Procedures for using the TLDs during calibration or test irradia-

tions depend on conditions within each individual facility and on the

requirements of the radiation-hardness tests. However, precautions on

handling, exposure to light, and exposure to temperature variations

apply. The procedures described in Sections 9 and 10 are applicable.

A1 .5 Readout

Al.5.1 Pre-readout cleaning of the chips should be done only if

necessary (see A1 .2.2). Some types of TLDs, such as Li F , may require

pre-readout annealing. This is not required for CaF
2
:Mn.

Al.5.2 A heating rate of approximately 30°C/s should be satis-

factory. The TLD chips should have been heated to a temperature of at

least 450°C and preferably to 500°C at the end of the heating cycle.

Al.5.3 In general, the preferred measure of the TLD response is

the peak height of the light output vs. temperature curve. However, the

integrated light output is usually more conveniently obtained and is

satisfactory in most cases. When trade-offs are to be made with regard

to efficiency and accuracy, experience with a particular dosimeter and

reader combination usually determines which parameter gives the most

satisfactory measure of TLD response.
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Al.5.4 Most TLD readers are furnished with some type of check light

source that may be used to check the stability of the reader. This

procedure provides a check of the reader stability only for the light

measuring section and its associated electronics; it does not test the

performance and stability of the heating and temperature measuring

section. Therefore, the use of calibrated TLDs, as described in 10.3,

during each readout session also is recommended.

A1 . 6 Precision and accuracy

Al.6.1 An example of the error analysis of a typical CaF
2
:Mn

chip system employed in radiation-hardness testing is given in Tables

Al.l and A1.2. These tables identify the sources of error and give

estimated magnitudes of the upper bounds of the errors. A basic assump-

tion for these data is that the TLD system has been characterized and

used in accordance with the recommended procedures in this standard.

Therefore, as pointed out in a footnote in Table Al.l, certain potential

sources of error are expected to be insignificant in this case.

Al.6.2 Table Al.l lists systematic errors and Table A1.2 lists

random errors. The systematic errors are estimates of the upper limits

of the errors for the particular factors identified. Since, by their

very nature, systematic errors cannot be known with great accuracy, they

are estimated from observation of the long-term behavior of a given TLD

system. On the other hand, random errors are obtained by standard sta-

tistical techniques. The values given in Table A1.2 are equal to one

standard deviation (a) of a batch or individual TLD response distribution.

Al.6.3 A further distinction is made in the analysis between

whether the absorbed dose is determined from a TLD system utilizing

dosimeters in an individual mode or in a batch mode. The difference

between individual and batch mode is discussed in Section 8.
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Al.6.4 A universally accepted procedure for combining syste-

matic errors does not exist. Generally, these errors are combined

either by simple addition or by a combination in quadrature (i.e., the

square root of the sum of the squares). In this analysis, the syste-

matic errors in Table Al.l are combined in quadrature and the result

is given as the total systematic uncertainty, E
g

. Whatever method of

combining errors is used should always be reported in the radiation-

hardness test results.

Al.6.5 The random errors listed in Table A1.2 are combined in

quadrature and the result given as a value of Oy. For the purposes of

this analysis, five dosimeters are assumed to be used in a specific radi-

ation hardness test. In this case, a standard error of the mean (SEOM)

of the absorbed-dose response of the five dosimeters is found by dividing

the combined standard deviation, a-j-, by the square root of the number, n,

of dosimeters employed; that is

The total random uncertainty is taken to be equal to three times the

SEOM.

Al.6.6 The overall uncertainty of the mean absorbed dose de-

termined by five dosimeters for the conditions described is taken as

the algebraic sum of the total systematic uncertainty, E
$

, and the

total random uncertainty, E
R

. For this example, the overall uncertainty

is equal to the following:

(for individual dosimeters), E + E D = 6.7%
S K

(for batch), E
s

+ E
R

= 13%
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Table Al.l

Estimates of Systematic Uncertainties for Typical CaF 2 :Mn Chip System

Source of Individual
Systematic Error Dosimeters Batch

1.
60

Co source calibration 3% 3%

2. TLD absorbed dose calibration

a. Determination of calibration curve 1% 2%

b. Conversion of exposure to dose in TLD 2% 2%

3. Time between irradiation and readout: 1% 3%

4.

fading correction factor

Conversion of dose in TLD to dose in Si 2% 2%

5.

for device test irradiation

Correction for attenuation in equilibrium 2% 2%

6.

material

Absorbed dose rate dependence * *

7. Energy dependence * *

8. Time between preparation and readout * *

9. Directional dependence * *

10. Temperature before, during, and after * *

11.

irradiation

Humidity dependence * *

12. Effect of size of TLD * *

Total systematic uncertainty, all errors 4.8% 5.8%

combined in quadrature, E s

* For purposes of this error analysis, it is assumed that the TLD

system is utilized in such a way as to make these errors negligible.
However, this assumption is not valid under all conditions of
radiation-hardness testing. A careful examination of all possible
sources of error must be made for the irradiation conditions and
TLD system employed in each specific test.
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Table A1.2

Estimates of Random Uncertainties for Typical CaF 2 :Mn Chip System

Sources of Individual
Random Error Dosimeters Batch

1 . Reproducibility of individual dosimeter response, a 1%

2. Correction for sensitivity variation between
dosimeters, o

1%

3. Uniformity of batch response, a 5%

Total, combined in quadrature, Oj 1.4% 5%

Standard error of mean of dose response of

five dosimeters, a.j./VrT

0.63% 2.2%

Total random uncertainty, Ep = 3(a-j-/Vn) 1.9% 6.7%
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A2. Energy Absorption Coefficients and Collision Stopping Powers

A2.1 Values of photon mass energy absorption coefficients and electron

mass collision stopping powers for several materials of interest in

radiation- hardness testing are shown in Table A2.1. All values for the

energy absorption coefficients are derived from reference 13, except

those values for air that are from reference 14. Values for the

stopping powers are from reference 15. Energy absorption co-

efficient values for chemical compounds not listed directly were

evaluated from the coefficients P-j/P-j for the constituent elements

according to the weighted average

where w^ is the proportion by weight of the i-th constituent [14].

Ratios of the energy absorption coefficients for the various

materials in Table A2.1 relative to silicon as a function of inci-

dent photon energy are shown in Figure A2.1. Similarly, ratios

of stopping powers are shown in Figure A2.2.
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Table A2.1. Mass Energy Absorption Coefficients: b
en/p

(cm 2
/g) and

Mass Collision Stopping Powers: S/p (MeV*cm 2
/g)

Energy

(MeV)

Air LiF CaF
2

A1 Si

pen/p
S/p pen/p

S/p *V P S/p u /p S/p u /p
en

S/p

0.01 4.61 19.7 5.74 18.2 48.3 16.6 25.4 16.4 32.4 16.9

0.02 0.511 11.5 0.632 10.7 6.58 9.93 3.06 9.79 3.99 10.1

0.04 0.0669 6.83 0.0769 6.31 0.819 5.96 0.353 5.88 0.470 6.07

0.06 0.0305 5.10 0.0317 4.71 0.247 4.48 0.108 4.42 0.142 4.56

0.08 0.0243 4.19 0.0234 3.87 0.111 3.70 0.0542 3.64 0.0682 3.76

0.1 0.0234 3.62 0.0219 3.35 0.0658 3.21 0.0373 3.16 0.0442 3.27

0.2 0.0268 2.46 0.0247 2.28 0.0309 2.20 0.0272 2.16 0.0287 2.24

0.4 0.0295 1.90 0.0273 1.74 0.0293 1.71 0.0286 1 .67 0.0298 1.73

0.6 0.0295 1.74 0.0272 1.59 0.0289 1.57 0.0284 1.53 0.0296 1.58

0.8 0.0289 1.68 0.0266 1.52 0.0279 1.51 0.0277 1 .48 0.0285 1.53

1.0 0.0278 1.66 0.0257 1.49 0.0271 1.49 0.0268 1 .46 0.0277 1.51

2.0 0.0234 1.68 0.0217 1.48 0.0231 1.49 0.0225 1.47 0.0236 1.52

4.0 0.0186 1.79 0.0174 1.52 0.0194 1.56 0.0188 1.54 0.0197 1.60

6.0 0.0164 1.87 0.0153 1.55 0.0182 1.61 0.0175 1.58 0.0185 1.65

8.0 0.0152 1.93 0.0142 1.58 0.0178 1.64 0.0170 1.62 0.0180 1.69

10 0.0145 1.98 0.0137 1.60 0.0177 1.67 0.0168 1 .64 0.0179 1.72

20 0.0131 2.13 0.0123 1.66 0.0180 1.75 0.0167 1.71 0.0180 1 .80

40 0.0124 2.25 0.0119 1.72 0.0181 1.83 0.0168 1.77 0.0182 1.87

60 0.0122 2.31 0.0116 1.75 0.0177 1.87 0.0165 1.81 0.0178 1.90
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A3. Determination of Electron Equilibrium Thickness

A3.1 When a material is irradiated by a photon beam, secondary electrons

are generated in the material by interaction of the photons with

the atoms of the material. At some depth in the material, the

number of secondary electrons of a given energy entering a small

volume of the material is equal to the number of secondary electrons

of the same energy leaving the volume. Within that volume, electron

(charged particle) equilibrium is said to exist [1,16].

A3. 2 The thickness of material required to approximate electron equilibrium

is equal to the range of the maximum-energy secondary electron that

can be generated by the primary photons. This thickness as a function

of maximum photon energy is shown as curve A in Fig. A3.1 [17]. It

has been found that for all practical purposes electron equilibrium

is achieved within a few percent of its true condition by a thick-

ness considerably less than the maximum secondary electron range

[18,19]. This lesser thickness is given by curve B of Fig. A3.1

and approximately corresponds to the depth at which the peak of the

depth vs. absorbed dose buildup curve occurs for a given incident photon

energy spectrum [18,20]. It should be noted that curve B has been

determined from data for bremsstrahlung beams with broad energy

spectra. The depth of this absorbed-dose peak to some extent

depends on the incident photon energy spectrum and the determina-

tion of that depth on the method of measurement. Thus, it should be

determined experimentally for a particular radiation source.

A3. 3 Obviously, it is an advantage to use the least amount of material

practical to achieve equilibrium conditions since the intensity of

the primary photons is attenuated by this material thickness.
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Correction should be made for this attenuation (as in 9.5)

since the dose is being determined for the photon fluence at the

point of measurement.

A3. 4 A significant error in absorbed-dose determination can occur if the

thickness given by curve B is used when an appreciable number

of near-maximum-energy secondary electrons are generated by

the primary photon beam outside the material of interest.

These electrons might come directly from an x-ray converter or

from direct interaction of the primary photon beam with collimators

or other material structures within the vicinity of the measurement

area. One method of removing such unwanted electrons from the photon

beam would be the use of a transverse magnetic field. However, if

this technique is not practical, and it is known or suspected that

the primary photon beam contains a significant number of high-energy

secondary electrons, then the minimum equilibrium thickness chosen

should be equal to the secondary electron range given by curve A of

Fig. A3. 1

.

NOTE A3.1 Fig. A3.1 is based on data calculated or experimentally

determined for water. However, equilibrium thickness values obtained from

these curves should be within 25% of the thicknesses required for most

materials of low to medium atomic number (up to Z=26).
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MATERIAL

THICKNESS

,

g/cm

MAX. PHOTON ENERGY, MeV

Fig. A3.1 Material thickness required for
electron equilibrium. A: electron
range. B: depth of peak dose.
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A4. Determination of Test Sample Size

A4.1 The number of TLDs (i.e., the sample size n) required for each

test group in 8.3.3 is based on a two-sided t-test to

detect a difference 6 between means of two test groups with a

confidence level of 95% and a probability of failing to detect

such a difference of 0.50 (see Sec. 3-3. 1.1 of reference 2).

The graph of n vs. d in Fig. A4.1 was derived from table A-8

of reference 2.

A4.2 The number of TLDs, n, required to estimate the mean TLD response

at a given absorbed-dose level as described in 9.3.1 is

based on the determination of a two-sided confidence interval

that is expected to bracket the true mean response, m, 100(l-a)%

of the time. In this case, the confidence level has been chosen

as 95% (i.e., 1-a = 0.95 and a = 0.05) and the confidence interval

has been assigned a value of d = ±5% of the sample mean response,

Y . The number of TLDs required is

d
2

where t is the percentile of the t distribution at a 95% confi-

dence level for 29 degrees of freedom. This number of degrees

of freedom is determined from the number of samples used for ob-

taining the estimated standard deviation, s, in 8.1.1 (see

sec. 2-3.2 of reference 2).

A4.3 The statistical test methods included here are those generally

accepted for product testing. The significance levels chosen are

somewhat arbitrary but were selected on the basis of being
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adequate for the performance tests specified. Other more or less

stringent acceptable statistical requirements should be assigned

upon practical assessment of the overall objectives of the hard-

ness assurance tests.
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Fig. A4.1 Sample size required to detect
difference of two means.
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